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1 Introduction

Three-dimensional gauge theories exhibit a range of interesting, non-perturbative phenom-

ena (see, for example, [1–6] and references/citations thereof). Some of the complicating

features of these theories stem from the fact that the gauge interaction is a classically

relevant operator in three dimensions. As we flow towards the infrared (IR), the gauge

coupling grows indefinitely and the theory becomes strongly coupled. A way to ameliorate

this strong coupling problem is to add to the Lagrangian the Chern-Simons (CS) interaction

SCS =
k

4π

∫
Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
(1.1)

where A is the gauge field one-form and the constant k is the CS level. This interaction,

which is specific to three dimensions, makes the gauge field massive with a mass of order

mCS ∼ g2
YMk (1.2)

where gYM is the gauge coupling. At energies below the scale set by mCS the IR behavior

of the theory is controlled by the CS interaction and the flow towards strong coupling is

effectively cutoff.

Chern-Simons theories coupled to matter are non-trivial quantum field theories. With-

out matter the Chern-Simons Lagrangian (1.1) defines a topological quantum field theory

with a fascinating connection to two-dimensional Wess-Zumino-Witten (WZW) models [7].

In this paper we will discuss Chern-Simons-Matter (CSM) theories with at least four

supercharges, that is N = 2 supersymmetry in three dimensions. These theories are char-

acterized by a gauge group G, the CS level k and the representations Ri of the matter fields.

The gauge field is part of the N = 2 vector multiplet V and matter is organized in N = 2

chiral multiplets Φi. The components of N = 2 multiplets can be deduced easily by dimen-

sional reduction from N = 1 multiplets in four dimensions. The vector multiplet contains

the three-dimensional gauge field Aµ, a scalar σ, an auxiliary scalar D and a two-component

Dirac spinor χ. A chiral multiplet Φi contains a complex scalar ϕi and a Dirac spinor ψi.

The N = 2 supersymmetric CS action has a known expression in superspace lan-

guage [8–11]. This expression becomes simpler in Wess-Zumino (WZ) gauge

SN=2
CS =

k

4π

∫
d3x Tr

(
A ∧ dA+

2

3
A ∧A ∧A− χ̄χ+ 2Dσ

)
. (1.3)

The matter multiplets have the standard kinetic terms

Smatter,kin =

∫
d3x d4θ

∑

i

Φ̄ie
V Φi . (1.4)

Further coupling via superpotential interactions is possible.

Integrating out the auxiliary fields and massive fermions of the N = 2 vector multiplet

gives an interacting theory of scalars and fermions [12]. Besides their intrinsic interest,

such theories have important applications in M-theory and the AdS/CFT correspondence.
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Conformal CSM theories with enhanced supersymmetry (N = 4, 5, 6, 8) have been ar-

gued [13–17] to provide a gauge theory description of the infrared dynamics of M2-branes

in different setups and to be related by holography to string/M-theory on AdS4 back-

grounds. In this paper, our main objective are the field theory properties of N = 2 CSM

theories, although some comments will be made on aspects related to M-brane dynamics

and the AdS4/CFT3 correspondence.

Assuming the absence of superpotential interactions, all couplings in the action

SN=2
CSM = SN=2

CS + Smatter,kin (1.5)

are controlled by the inverse of the CS level 1
k . The theory is weakly coupled at large k. For

non-abelian gauge groups G the level k is an integer, and does not receive quantum cor-

rections, except for a possible one-loop shift [11, 18, 19]. In fact, one can argue that these

theories are both classically and quantum mechanically superconformal [12]. In these su-

perconformal theories the U(1)R symmetry is non-trivial and depends on k. In other words,

the scaling dimensions of chiral operators receive k-dependent anomalous dimensions.

The addition of relevant superpotential interactions to the action (1.5) breaks the

conformal invariance and generates a renormalization group (RG) flow towards new inter-

acting fixed points. Identifying these flows and determining analytically their properties

is, in general, a non-perturbative question that remains largely open.

In order to make progress in this problem it is desirable to determine with exact

analytical methods the U(1)R symmetry in any of the above fixed points. Knowing this

symmetry would allow us to determine the exact scaling dimension of chiral operators.

Relevant chiral operators can be added to the Lagrangian as superpotential deformations

to generate new RG flows and IR fixed points.

A similar question can be posed in four-dimensional gauge theories with N = 1 super-

symmetry. In this context, the exact U(1)R symmetry can be determined with a combina-

tion of a-maximization and ’t Hooft anomaly matching [20] .

There are several tools that allow us to compute non-perturbative quantities in four-

dimensional N = 1 gauge theories. Many of them are closely related to the presence of

anomalies. The NSVZ exact β-function formula [21], a-maximization [20] and ’t Hooft

anomaly matching are well known examples. In some cases, additional information can be

obtained with the use of Seiberg duality [22], which is a powerful strong/weak coupling

duality. Since there are no anomalies of continuous symmetries in three dimensions a

corresponding understanding of the properties of three-dimensional quantum field theories

is currently lacking.

In an effort to obtain a more precise understanding of the properties of U(1)R symme-

tries and RG flows in N = 2 CSM theories, we will examine in this paper what happens in

U(Nc) N = 2 CS theories coupled to a set of matter fields that contains: Nf chiral super-

fields Qi (i = 1, . . . , Nf ) in the fundamental representation, Nf chiral superfields Q̃i in the

antifundamental and zero, one or two chiral superfields in the adjoint representation of the

gauge group. Non-trivial RG flows can be generated in these theories with superpotential

deformations that involve gauge invariant chiral operators made out of the above fields.

– 3 –
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In the presence of superpotential interactions these theories can be viewed as three-

dimensional versions of N = (2, 2) Landau-Ginzburg (LG) models in two dimensions.

They can also be viewed as three-dimensional versions of N = 1 SQCD theories in four

dimensions with Nf flavor chiral multiplets and zero, one or two adjoints.1 Because of the

many similarities with the four-dimensional (adjoint) SQCD theories we will sometimes call

the corresponding CSM theories CS-SQCD, 1-adjoint CS-SQCD and 2-adjoint CS-SQCD.

We will find that the similarities between CS-SQCD and SQCD theories in three and

four dimensions respectively are not limited to the matter content but extend to non-

perturbative aspects of their dynamics. Some of the common features can be traced back

to the similarities between the chiral rings. Other features, however, like the stability of the

supersymmetric vacuum and Seiberg duality, are highly non-trivial and appear to arise in

three and four dimensions through different mechanisms. These similarities are impressive

and reveal how rich the dynamics of N = 2 CSM theories is.

Spontaneous supersymmetry breaking and Seiberg duality are properties that arise in

some of the theories we will examine. They can be inferred most easily from the rules of

brane dynamics in configurations of D-branes and NS5-branes in type IIB string theory [23–

26]. In some cases, where a string theory construction is unknown, we will argue for bounds

of spontaneous breaking of supersymmetry using the chiral ring structure directly in field

theory. These properties have important consequences for the exact U(1)R symmetry

in these theories and as such they will provide a useful semi-quantitative guide to the

behavior of R-charges as we move from the weak to the strong coupling regime. This

indirect reasoning is what will allow us to make some progress despite our lack of an exact

analytic tool in three dimensions like a-maximization.

With this information about R-symmetries we will be able to identify a web of RG flows

connecting different conformal field theories (CFTs) in three dimensions. In the IR of these

flows interacting fixed points of the β-function arise from a balancing of two counteracting

sources: the gauge interactions that work to decrease the R-charges and the superpotential

interactions that work to increase them. This can be verified explicitly in some cases with

a two-loop computation in perturbation theory. Furthermore, we find that a subset of the

CFTs arising in this way admits an ADE classification. A similar classification was also

observed in four-dimensional two-adjoint SQCD theories [27].

The organization of this paper is as follows. Section 2 reviews the key results obtained

in ref. [25] about CS-SQCD theories and supplements them with new observations on

the phase structure and the U(1)R symmetry. Section 3 considers RG flows that arise

in CS-SQCD theories with superpotential deformations that involve quadratic and cubic

meson interactions. Section 4 is devoted to the 1-adjoint CS-SQCD theories reviewing

and extending the results obtained in ref. [26]. Special emphasis is given to the R-charge

of the adjoint chiral superfield as a function of the parameters of the theory. Sections 5

and 6 discuss RG flows that arise in 2-adjoint CS-SQCD theories with superpotential

1In four dimensions two is the maximum number of adjoints if we require asymptotic freedom. We do

not have a corresponding restriction in three dimensions, but since we want to compare the properties of

three and four-dimensional gauge theories we will also restrict our discussion to CSM theories with up to

two adjoint chiral superfields.
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deformations that involve single trace, and in some cases also mesonic, chiral operators. In

the process, we encounter a new set of Chern-Simons theories that exhibit Seiberg duality

and the emergence of a partial ADE classification of fixed points. We conclude with an

overall discussion and a list of interesting open problems in section 7. Some useful technical

details are relegated to two appendices at the end of the paper.

2 CS-SQCD

2.1 Definition and phase structure

The first set of theories in our agenda are Chern-Simons versions of the four-dimensional

N = 1 SQCD theories. The Lagrangian that defines these theories consists of the N = 2 CS

interaction at level k and the N = 2 kinetic terms for Nf pairs of N = 2 chiral multiplets

Qi, Q̃i (i = 1, 2, . . . , Nf ) in the fundamental (resp. antifundamental) representation of

the gauge group. Explicit expressions for this Lagrangian can be found, for example, in

ref. [12]. We will consider the unitary gauge groupG = U(Nc). In contrast to what happens

in four dimensions, here the U(1) ⊂ U(Nc) is interacting and will have some important

implications that will be discussed below.

We will restrict the level k to be positive. Negative values of k can be obtained by a

parity transformation xµ → −xµ that effectively sends k → −k. One should think of 1/k

as the ‘gauge coupling’ of the CS theory. In the large Nc limit, the ratio λ = Nc

k plays the

rôle of the ’t Hooft coupling. For simplicity, in what follows, we will consider our theories

in the large-N limit where k,Nc, Nf ≫ 1 with the ratios λ and x = Nc

Nf
kept finite. This is

not necessary for most of the statements that we make below. When finite-N effects do not

modify the qualitative picture it will be more convenient to think in terms of continuous,

instead of discrete, parameters.

The so-defined CS-SQCD theories are superconformal both classically and quantum

mechanically [12]. The global symmetry of the theory is SU(Nf )×SU(Nf )×U(1)a×U(1)R.

As we increase the number of colors Nc, say for fixed k and Nf , we encounter a critical

point where supersymmetry gets spontaneously broken. At the critical point

Nc = Nf + k . (2.1)

The simplest way to obtain this spontaneous breaking of supersymmetry is by embed-

ding the theory in a configuration of D-branes and NS5-branes in type IIB string theory.

The relevant setup was analyzed in ref. [25] and we briefly review it here for completeness.

It consists of (see also the configuration (a) in figure 1)

1 NS5 : 0 1 2 3 4 5

1 (1, k) : 0 1 2

[
3

7

]

θ

8 9

Nc D3 : 0 1 2 |6|
Nf D5 : 0 1 2 7 8 9 (2.2)
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D5�branesD3�branes
NS5�brane

(1,k) bound state

D5�branes
color D3�branes NS5�brane

(1,k) bound stateflavor D3�branes
Nc

N f

(6) (45)(789)
N f

N f

N f + k−Nc

(a) (b)
Figure 1. Configuration (a) engineers the electric version of the N = 2 CS-SQCD theory. Config-

uration (b) engineers the magnetic version.

(1, k) denotes the bound state of one NS5-brane and k D5-branes.
[3
7

]
θ

denotes an orien-

tation in the (37) plane at an angle θ with respect to the axis 3. In the above configuration

θ is an angle fixed by k by the relation [28]

tan θ = gsk . (2.3)

|6| denotes that the D3-branes have a finite length along the x6 direction. The CS-SQCD

theory arises in this setup as the effective low-energy description of the dynamics of the

theory that resides in the three-dimensional intersection of this configuration [29].

In this context, the condition for the existence of a supersymmetric vacuum is a con-

sequence of the s-rule of brane dynamics [23, 24]. In figure 1(a) the s-rule constrains the

number of D3-branes stretching directly between the NS5-brane and the (1, k) bound state.

This number (Nc−Nf ) must be smaller or equal to k in order to preserve supersymmetry,

hence the condition

Nc ≤ Nf + k . (2.4)

In terms of λ and x this condition reads

λ ≤ x

x− 1
. (2.5)

Accordingly, the phases of CS-SQCD are plotted in figure 2. There are two basic re-

gions: a region where the vacuum is supersymmetric and a region where supersymmetry

– 6 –
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λ =

Nc

k

x =

Nc

N f

1

1

No SUSY
SUSY

Figure 2. Phases of CS-SQCD in a (λ, x) diagram. The blue region at the bottom is the pertur-

bative region of the electric theory. The orange region at the right corner is where the topological

N = 2 CS theory is recovered.

is spontaneously broken. The supersymmetric region has a corner at x → ∞, λ ∈ [0, 1)

and a corner at x ∈ [0, 1), λ→ ∞. The first corner, colored orange in figure 2, is the place

where Nf → 0 and the theory becomes topological. At the second corner the coupling λ

is infinitely large.

It is interesting to note that the value x = 1 is also special for the SU(Nc) SQCD theory

in four dimensions. The IR behavior of SQCD is characterized by the single parameter x

and the supersymmetric vacuum is lifted for Nf < Nc, i.e. for x > 1. In CS-SQCD we

have instead two parameters characterizing the theory, λ and x. From the point of view

of the stability of the supersymmetric vacuum, SQCD is similar to the infinitely strongly

coupled regime of CS-SQCD where λ ≫ 1. It is unclear whether this observation implies

a deeper connection between three- and four-dimensional dynamics.

Finally, there are two regions where CS-SQCD admits a weakly coupled description.

An obvious one is the region at the bottom, which is colored blue in figure 2, where λ≪ 1.

The other one is the supersymmetric region close to the critical SUSY breaking curve, i.e.

the region with λ . x
x−1 , x ≥ 1. Here, a weakly coupled description exists in terms of a

Seiberg dual magnetic theory.

2.2 Seiberg duality

It has been proposed that the N = 2 CS-SQCD theories exhibit Seiberg duality [25].

The dual magnetic theory is an N = 2 CSM theory with gauge group U(Nf + k − Nc)

at level k. It has Nf pairs of quarks qi, q̃
i (i = 1, 2, . . . , Nf ) and a set of magnetic meson

chiral superfieldsM i
j which are gauge singlets. As in four-dimensional SQCD, the magnetic

– 7 –
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theory possesses a cubic superpotential

Wmag = M i
jqiq̃

j . (2.6)

In three dimensions, this is a classically relevant interaction. It generates an RG flow and in

the IR, where the magnetic theory is dual to the electric, this interaction becomes marginal.

To obtain Seiberg duality in the context of the string theory configuration of figure 1

we displace sequentially the Nf D5-branes and the (1, k) bound state along the x6 direction

past the NS5-brane. When Nf D5-branes pass through the NS5-brane, Nf D3-branes are

created. Similarly, when the (1, k) bound state passes through the NS5-brane, k D3-branes

are created. At the end of the process we obtain the configuration in figure 1(b) whose

low-energy dynamics is described by the magnetic theory presented above.

As a small parenthesis we note that in the topological limit Nf → 0, Seiberg duality

has a natural interpretation as level-rank duality in the bosonic SU(N)k WZW model [17].

Indeed, at large k we can integrate out the gluino field (whose mass is proportional to k)

to obtain pure CS theory at the shifted level [30]

k′ = k −Nc . (2.7)

By the CS-WZW correspondence of [7] this theory is equivalent to the (chiral) SU(Nc)k−Nc

WZW model (for the moment we set the U(1) part of the gauge group aside). Level-rank

duality implies that this is equivalent to the SU(k −Nc)Nc WZW model, which, again by

the CS-WZW correspondence, is equivalent to the SU(k−Nc) pure CS theory at level Nc.

Integrating in the gluinos (and putting back the U(1) part) we recover the Seiberg dual

N = 2 CS theory with gauge group U(k −Nc) and level k.

For x > 1 Seiberg duality acts as a strong/weak coupling duality. Indeed, the magnetic

’t Hooft coupling is

λ̃ =
Nf + k −Nc

k
= 1 − λ

(
1 − 1

x

)
. (2.8)

Hence, when λ ≪ 1, λ̃ ∼ 1 and the magnetic description is strongly coupled. Conversely,

when λ̃ ≪ 1, λ ∼
(
1 − x−1

)−1
> 1 and the electric theory is strongly coupled. This

strong/weak relation disappears for x < 1. In this case, both descriptions become strongly

coupled simultaneously.

2.3 Qualitative features of R-charges

We now come to one of the central questions in this paper — how the R-charges behave

as we change the parameters of the CSM theory. In the electric version of CS-SQCD the

flavor symmetry SU(Nf )×SU(Nf ) guarantees that all the flavors Qi, Q̃i (i = 1, 2, . . . , Nf )

have the same U(1)R charge RQ = RQ(Nc, Nf , k). In the large-N limit RQ = RQ(λ, x).

Similarly, in the magnetic theory all the flavors qi, q̃
i have the same R-charge Rq = Rq(λ, x).

The magnetic theory also possesses the gauge singlet elementary meson superfield M i
j ,

whose R-charge we denote as RM = RM (λ, x).

The three functions RQ, Rq and RM are related by Seiberg duality. The composite

meson chiral superfields of the electric theory Mi
j = QiQ̃j are mapped to the elementary

– 8 –
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fields M i
j . Hence,

RM = 2RQ . (2.9)

Moreover, in the IR of the magnetic theory the superpotential Wmag (2.6) becomes

marginal and

RM + 2Rq = 2 . (2.10)

We conclude that there is one independent R-charge function, say RQ, and

Rq = 1 −RQ , RM = 2RQ . (2.11)

In the four-dimensional SU(Nc) SQCD we can determine RQ exactly by demanding

anomaly cancellation. The result is RQ = 1−x. In three dimensions there are no anomalies

for continuous symmetries, hence we cannot proceed in the same way.

Alternatively, if we did not know about anomalies in four dimensions, but we knew

about Seiberg duality, it would still have been possible to determine RQ exactly in N = 1

SQCD. By matching the baryon operators (ai are gauge indices here)

Bi1···iNc = ǫa1a2···aNcQi1a1 · · ·Q
iNc
aNc

, B̃i1···iNc = ǫa1a2···aNc
Q̃a1i1 · · · Q̃aNc

iNc
(2.12)

to their magnetic duals one finds independently a new relation between RQ and Rq

NcRQ = (Nf −Nc)Rq (2.13)

which determines RQ as above in agreement with the anomaly cancellation condition. We

cannot repeat this exercise in CS-SQCD, because the gauge group is U(Nc) and there are

no baryons to match. Hence, the U(1) part of the gauge group, which is so crucial for

the validity of Seiberg duality in CS-SQCD,2 is also the reason why the exact form of the

function RQ avoids a simple detection.

Some information about the behavior of RQ(λ, x) can be obtained in perturbative

regimes. For λ, 1
x ≪ 1 a two-loop perturbative computation of RQ gives [12] (we have

taken the large-N limit for simplicity)

RQ(λ, x) =
1

2
− λ2

16
+ · · · (2.14)

where the dots · · · indicate subleading corrections in λ and 1
x . As usual, we observe that

gauge interactions work to reduce the classical R-charge.

At strong coupling the behavior of the theory depends, as we said, on the value of x.

For x < 1, the coupling λ can grow to infinity and there is no obvious regime which admits a

weakly coupled description. For x > 1, however, Seiberg duality provides a weakly coupled

description when λ . x
x−1 . In this regime we can compute using the magnetic theory. At

the critical coupling λ = x
x−1 , the rank of the dual gauge group vanishes and the quark

superfields disappear. The magnetic superpotential is absent and the superfields M i
j are

free fields. This picture is supported by the brane setup in figure 1(b). At λ = x
x−1 the

color D3-branes are absent, there are no quark superfields from color-flavor open strings

2Indeed, if we simply dropped the U(1) in CS-SQCD, baryon matching would have been problematic.

– 9 –
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RQ(λ,x)

λ

1

2

x

x−1

1

4

?
x > 1

Figure 3. A plot of RQ as a function of λ for fixed x > 1. RQ interpolates between its classical value
1
2 and the value 1

4 at the critical point x
x−1 beyond which the theory exhibits spontaneous breaking

of supersymmetry. The exact behavior of the function in this interval is currently unknown.

and the IR dynamics is dominated by the free fields M i
j which arise from flavor-flavor open

strings. Consequently, in this limit RM = 1
2 and RQ = 1

4 . Moreover, at any value of

λ < x
x−1 we must have RM ≥ 1

2 by unitarity.

Assuming RQ is a continuous function of λ the emerging picture for x > 1 is depicted

in figure 3. At the lower part of the interval
[
0, x

x−1

]
RQ starts off at its classical value

1
2 and then decreases. At the upper end, RQ tends from above to the value 1

4 where the

mesons saturate the unitarity bound.3 In this range RQ is necessarily greater than 1
4 , but

how it behaves more precisely is currently unclear. It would be interesting, for example,

to know if RQ(λ, x) is a monotonic function of λ for fixed x (this seems to be a natural

expectation in the absence of superpotential interactions). It would also be interesting to

know what happens when x < 1.

3 CS-SQCD theories with mesonic superpotentials

3.1 Relevant mesonic superpotentials

We can deform the superconformal N = 2 CS-SQCD theories by adding to the Lagrangian

superpotential interactions that involve the chiral meson operators. For x > 1 the quali-

3The continuity of RQ at the critical coupling λ = x
x−1

is not immediately obvious from the magnetic

theory point of view. Although a discontinuity is unlikely there in our opinion, a clear justification of this

point would be desirable. A discontinuity of RQ at the critical coupling would imply that RQ tends to

a finite value between 1

2
and 1

4
as λ →

x
x−1

, but jumps discontinuously to the value 1

4
at λ = x

x−1
. We

proceed in the next section assuming this discontinuous behavior does not occur.
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tative picture of the previous section helps us understand which are the relevant superpo-

tential interactions that we can add.

The superpotential deformations

δW1 = mj
iQ

iQ̃j , δW2 =
α2

2
(QiQ̃j)(Q

jQ̃i) (3.1)

are relevant already at weak coupling λ. The first is a mass deformation, the second is a

deformation that drives the theory to an N = 3 supersymmetry enhanced IR fixed point.

This RG flow will be discussed in the next subsection.

Higher powers of the meson operators are classically irrelevant operators. We have

seen, however, that as we increase the coupling the R-charge RQ goes down achieving the

minimum value 1
4 at λ = x

x−1 . Consequently, there is a critical value of λ beyond which

the sextic superpotential deformation

δW3 = α3(QQ̃)3 (3.2)

becomes relevant. We will discuss this deformation in subsection 3.3.

The next (and last in the supersymmetric interval) power of mesons (QQ̃)4 becomes

marginal at the critical curve λ = x
x−1 . If Seiberg duality is to be trusted there, this point

has a dual description in terms of a WZ model for M with superpotential

Wmag = α4M
4 (3.3)

The leading two-loop correction to the β-function of α4 is positive (as follows quite generally

from unitarity). Hence, at least perturbatively near α4 = 0, this perturbation is irrelevant

and does not lead to a new fixed point.

3.2 Quartic deformations

The quartic deformation δW2 in (3.1) is classically marginal, but quantum mechanically

relevant. At small λ, the large-N limit β-function for the coupling α2 is [12]

dα2

dt
=

N2
c

(8π)2
α2

[
α2

2 −
(

4π

k

)2
]
, (3.4)

where t is the logarithm of the RG scale. Perturbing by δW2 drives the theory to a new

IR fixed point with α2 value

α2,N=3 = ±4π

k
(3.5)

controlled by the CS level k. This is a fixed point with enhanced N = 3 supersymmetry [12]

(see also below). Accordingly, the new R-symmetry is SU(2). The SU(Nf )×SU(Nf ) global

flavor symmetry is broken down to the diagonal SU(Nf ) by the superpotential interaction.

At the N = 3 fixed point the superpotential interaction is again marginal and RQ has

recovered its classical value 1
2 . The absence of quantum corrections to RQ as we change

λ, x at this point is consistent with the fact that the U(1)R symmetry is now part of the

larger SU(2)R symmetry which precludes the presence of anomalous dimensions for the

meson operators QQ̃.
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As a deformation of the N = 2 CS-SQCD theory, the N = 3 fixed points are still

expected to exhibit Seiberg duality in terms of a U(Nf + k −Nc) theory and spontaneous

supersymmetry breaking at Nc = Nf + k. In what follows we will describe two different

brane configurations in type IIB string theory that confirm these properties.

3.2.1 Quartic couplings from brane configurations I

The first configuration of branes in type IIB string theory that we want to consider is

similar to the configuration appearing in figure 1(a). The only difference is a change in the

orientation of the (1, k) bound state in the (48) and (59) planes. D3, D5, NS5 and (1, k)

branes are now oriented in the following way

1 NS5 : 0 1 2 3 4 5

1 (1, k) : 0 1 2

[
3

7

]

θ

[
4

8

]

θ

[
5

9

]

−θ
Nc D3 : 0 1 2 |6|
Nf D5 : 0 1 2 7 8 9 (3.6)

θ is still the k-controlled angle that appears in eq. (2.3). This configuration expressly

preserves N = 3 supersymmetry in three dimensions [29].

The low-energy description of this setup is in terms of a U(Nc) N = 3 CS theory at

level k coupled to Nf pairs of (anti)fundamentals Qi, Q̃i and a massive chiral superfield

X in the adjoint representation of the gauge group. The Lagrangian includes the

superpotential interactions

WN=3 = − k

8π
TrX2 + Q̃iXQ

i . (3.7)

At large k the superfield X can be integrated out to recover the quartic superpotential

δW2 with α2 = 4π
k .

Within string theory Seiberg duality follows, as in section 2, by moving the D5-branes

and the (1, k) bound state through the NS5-brane along x6 to obtain a configuration of the

form depicted in figure 1(b). The dual gauge theory is a U(Nf + k−Nc) N = 3 CS theory

at level k with Nf pairs of (anti)fundamentals qi, q̃
i, a massive adjoint chiral superfield X

and the superpotential (3.7) with Q, Q̃ replaced by q, q̃. From the s-rule of brane dynamics

we deduce that there is no supersymmetric vacuum for Nc > Nf + k.

Seiberg duality in this case acts in a self-similar way. A generalization to theories with

superpotentials of the form (3.7), but arbitrary power for X (TrXn+1), will be considered

in section 6.2.
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3.2.2 Quartic couplings from brane configurations II

The generic deformation by δW2 can be obtained in string theory within the following type

IIB configuration

1 NS5 : 0 1 2 3 4 5

1 (1, k) : 0 1 2

[
3

7

]

θ

8 9

Nc D3 : 0 1 2 |6|

Nf D5 : 0 1 2 7

[
4

8

]

ψ

[
5

9

]

ψ

(3.8)

The rotation of the D5-branes by an arbitrary angle ψ in the (48), (59) planes provides

the quartic coupling δW2. Similar type IIA configurations related to four-dimensional

N = 1 SQCD theories with quartic superpotential have been discussed in [31] (an earlier

discussion oriented also towards three-dimensional N = 2 gauge theories can be found

in [28]). The presence of the quartic coupling in this setup will be justified in a moment.

θ is again given by eq. (2.3). At the special value ψ = π
2 the D5-branes are oriented

along 012789 and we reproduce the configuration that gives the N = 2 CS-SQCD theory

without superpotential interactions.

For generic angle ψ the configuration (3.8) preserves N = 2 supersymmetry in three

dimensions. A quick verification of this fact appears in appendix A. The low-energy field

theory exhibits N = 3 supersymmetry enhancement for a special value of the quartic

coupling, and therefore a special value of the angle ψ (see below). This effect is not visible

in the brane configuration.

Before discussing further the low-energy gauge theory description of this setup it will

be convenient to move the D5 and (1, k) fivebranes along the x6 direction past the NS5-

brane. Once again, this motion leads to a Seiberg dual configuration of the form depicted

in figure 1(b). At low energies the dynamics of this configuration is described by the

magnetic version of N = 2 CS-SQCD (level k and gauge group U(Nf + k − Nc)) with a

mass deformed superpotential

W̃ =
√
µM i

jqiq̃
j +

α

2
M j
iM

i
j . (3.9)

µ is a scale with the dimension of mass which was kept implicit before. The extra mass

term for the meson M appears because of the rotation of the D5-branes. It captures the

fact that the Nf D3-branes stretching between the D5-branes and the (1, k) bound state

can no longer move freely in the (89) plane. The mass parameter α is related to the rotation

angle ψ via the relation

α = µ cotψ . (3.10)

By integrating out the massive fields M i
j we obtain a superpotential with a quartic inter-

action for the magnetic quarks

W̃ = −tanψ

2
(qq̃)2 . (3.11)
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Returning to the electric description, we recognize that the deformation which is dual

to M2 is (QQ̃)2. Hence, in the presence of the rotated D5-branes the electric theory includes

the quartic superpotential interaction

W =
β2 cotψ

2
(QQ̃)2 , (3.12)

where β is the proportionality constant that appears in the duality relation M i
j = β√

µQ
iQ̃j.

Requiring that the N = 3 supersymmetry enhancement occurs simultaneously in the elec-

tric and magnetic theories gives

tanψN=3 =
4π

k
, β = ±4π

k
. (3.13)

Again, we observe that Seiberg duality exchanges two versions of the same the-

ory — the rank of the gauge group is dualized and the quartic superpotential coupling is

essentially inversed.

3.3 Sextic deformations

The sextic operator (QQ̃)3 has classical dimension ∆6 = 3, and is therefore irrelevant at

small coupling λ. As we increase the coupling for x > 1 the scaling dimension ∆6 =

6RQ(λ, x) goes down (presumably monotonically) until it reaches the minimum value 3
2 at

the supersymmetry breaking boundary x
x−1 . This qualitative picture predicts that there is

a critical coupling λ∗ where the sextic operator becomes marginal. For this coupling

RQ(λ∗, x) =
1

3
, x > 1 . (3.14)

When the coupling lies in the range λ∗ < λ ≤ x
x−1 we can add this operator to the

electric theory Lagrangian to generate an RG flow towards a new IR fixed point. Near

the critical coupling λ∗ the deformation δW3 (see eq. (3.2)) is slightly relevant and an IR

fixed point is expected to exist at perturbative values of α3. It is nevertheless difficult to

compute the β-function in conformal perturbation theory in this case since the theory is

at finite coupling λ.

Applying Seiberg duality to the deformed theory we obtain a magnetic dual at level k

with gauge group U(Nf + k −Nc) and superpotential

W̃ =
√
µMqq̃ + α̃3M

3 . (3.15)

At weak magnetic coupling λ̃ = 1−λx−1
x ≪ 1 the operator M3 is relevant (∆(M3) ∼ 3

2 < 2)

and the β-function is controlled to leading order in λ̃ by a WZ model for the field M with

cubic superpotential. This β-function is expected to have a zero at a finite value of α̃3.

4 CS-SQCD theories with one adjoint chiral superfield

4.1 Brief review of known results

In this section we will discuss the properties of a more complex set of theories. These

are U(Nc) N = 2 CSM theories at Chern-Simons level k coupled to Nf pairs of
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(anti)fundamental chiral superfields Qi, Q̃i and one superfield X in the adjoint repre-

sentation of the gauge group. In the absence of superpotential interactions we will call

this theory the Â theory following a notation applied to analogous four-dimensional gauge

theories in [27].

Applying the general arguments of [12], we deduce that the Â theory is superconformal.

Moreover, we will present a picture suggesting that, unlike the CS-SQCD theory without

the adjoint superfield, in the Â theory there is no range of parameters where supersymmetry

is spontaneously broken. The global symmetry is SU(Nf )×SU(Nf )×U(1)a×U(1)X×U(1)R.

The classical chiral ring consists of the single trace operators

TrXn+1 , n = 0, 1, . . . , (4.1)

made out of the adjoint chiral superfield X, and the generalized meson operators

QiXnQ̃j , n = 0, 1, . . . . (4.2)

Since we consider theories with gauge group U(Nc) there are no baryon operators. Gauge

invariant baryon-like operators constructed out of ’t Hooft monopole operators [32] can

exist though. We will not, however, consider such operators in this paper.

The addition of the superpotential interaction

Wn+1 =
g0

n+ 1
TrXn+1 (4.3)

to the Lagrangian truncates the above chiral ring to the finite subset

TrXℓ , QiQ̃j , QiXℓQ̃j , ℓ = 1, . . . , n− 1 . (4.4)

We will call the resulting 1-adjoint CS-SQCD theories An+1. The global symmetry of these

theories is SU(Nf ) × SU(Nf ) × U(1)a × U(1)R. The U(1)X symmetry has been broken

explicitly by the superpotential Wn+1.

Some properties of the An+1 theories, like Seiberg duality and spontaneous breaking

of supersymmetry, can be deduced easily from a brane construction in string theory [26].

The relevant construction is a simple generalization of the type IIB string theory setup

appearing in figure 1. It involves

n NS5 : 0 1 2 3 4 5

1 (1, k) : 0 1 2

[
3

7

]

θ

8 9

Nc D3 : 0 1 2 |6|
Nf D5 : 0 1 2 7 8 9 (4.5)

The new superpotential parameter n is encoded in the number of NS5-branes along 012345.

For n = 1 the added superpotential is quadratic in the superfield X. Integrating out X we

recover the CS-SQCD theories of section 2.

The rôle of the superpotential interaction TrXn+1 in this setup can be identified in

the following way. Displacing the n NS5-branes in the (89) plane to n different points
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aℓ = x8
ℓ + ix9

ℓ (ℓ = 1, 2, . . . , n) forces the Nc D3-branes to break up into n groups of r1 D3-

branes ending on the a1 positioned NS5-brane, r2 D3-branes ending on the a2 positioned

NS5-brane etc. with
n∑

ℓ=1

rℓ = Nc . (4.6)

The new configuration describes vacua of the gauge theory where the diagonal matrix

elements of the complex scalar in the superfield X acquire expectation values ai. These

vacua are captured in gauge theory by a polynomial superpotential interaction of the form

W (X) =

n∑

ℓ=0

gℓ
n+ 1 − ℓ

Xn+1−ℓ . (4.7)

For generic coefficients {gℓ} the superpotential has n distinct minima {aℓ} related to {gℓ}
via the relation

W ′(x) =
n∑

ℓ=0

gℓx
n−ℓ = g0

n∏

ℓ=1

(x− aℓ) . (4.8)

In gauge theory the partition integers rℓ label the number of eigenvalues of the Nc × Nc

matrix X residing in the ℓ-th minimum of the potential V = |W ′(x)|2. When all the

expectation values are distinct the adjoint field is massive and the gauge group is Higgsed

U(Nc) → U(r1) × U(r2) × · · · × U(rn) . (4.9)

In this vacuum we obtain n decoupled copies of the N = 2 CS-SQCD theories at level k

with Nf flavor multiplets.

The condition for the existence of a supersymmetric vacuum in the U(rℓ) N = 2

CS-SQCD theory is

rℓ ≤ k +Nf , 1 ≤ ℓ ≤ n . (4.10)

Summing over ℓ and sending all the ai’s to zero we obtain a condition for the existence of

a supersymmetric vacuum in the An+1 theory

Nc ≤ n(k +Nf ) . (4.11)

The same condition can be obtained in string theory with the use of the s-rule of brane

dynamics [26].

A Seiberg dual version of the An+1 theory can be obtained by moving the D5 and (1, k)

fivebranes past the n NS5-branes along the x6 direction as in figure 1(b). This duality,

which was the subject of ref. [26], is a three-dimensional CS analog of Kutasov duality in

four-dimensional N = 1 gauge theory [33]. The magnetic An+1 theory is an N = 2 CSM

theory at CS level k and gauge group U(n(Nf + k) − Nc) coupled to Nf pairs of chiral

multiplets qi, q̃
i, an adjoint chiral superfield Y and n magnetic mesons Mℓ (ℓ = 1, . . . , n),

each of which is an Nf ×Nf matrix. There is a dual tree-level superpotential

W̃n+1 = − g0
n+ 1

TrY n+1 +

n∑

ℓ=1

Mℓq̃Y
n−ℓq . (4.12)

All these statements have important consequences for the structure of the Â and An+1

theories which we now proceed to uncover.
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4.2 New results on R-charges

In the Â theory the flavor symmetry SU(Nf ) × SU(Nf ) guarantees that all the flavors Qi,

Q̃i have the same U(1)R charge RQ = RQ(Nc, Nf , k). The U(1)R charge of the superfield

X is another function RX = RX(Nc, Nf , k). We will not be able to say much about the

function RQ in this paper, but there is a number of interesting statements that we can

make about the function RX using information about the properties of the An+1 theories.

The classical value of RX in the Â theory is 1
2 . Hence, at weak coupling, λ = Nc

k ≪ 1,

the chiral operators TrX2, TrX3 are relevant, the chiral operator TrX4 is classically

marginal and the chiral operators TrXn (n > 4) are irrelevant. Therefore, adding TrXn

(n > 4) to the Lagrangian at weak coupling will not modify the IR behavior of the theory.

The fact that supersymmetry can be spontaneously broken in the An+1 theory proves

that as we increase the coupling λ, RX receives in the Â theory large negative anomalous

contributions which eventually make the operator TrXn+1 relevant. At the supersymme-

try breaking value of λ the operator TrXn+1 modifies the IR behavior of the theory so

drastically that the supersymmetric vacuum is lifted.4 Presicely how RX decreases and

whether or not an operator TrXn+1 can become relevant in the Â theory depends on the

value of x, i.e. the ratio Nc/Nf .

In terms of the parameters λ and x a supersymmetric vacuum in the An+1 theory exists

for all λ if x ≤ n, and for λ such that

λ ≤ λSUSY
n+1 =

nx

x− n
(4.13)

for x > n.

Now let us fix the value of x and discuss what happens in the Â theory as we increase

the coupling λ. At small λ and large x a perturbative calculation based on the results

of [12] gives

RX(λ, x) ∼ 1

2
−

(
2 +

4

3x

)
λ2 + · · · , (4.14)

where the dots · · · denote subleading contributions. As we further increase λ the R-charge

RX continues to decrease. For all integers n ≤ [x] ([x] denotes the integer part of x) there

is a sequence of critical values

0 = λ∗2 = λ∗3 = λ∗4 < λ∗5 < · · · < λ∗n < λ∗n+1 < · · · < λ∗[x] < λ∗[x]+1 (4.15)

where each time one of the chiral operators TrXn+1 (n ≤ [x]) becomes marginal. By

definition, λ∗n+1 is the point where the chiral operator TrXn+1 becomes marginal, i.e. the

point where

RX(λ∗n+1, x) =
2

n+ 1
. (4.16)

Above λ∗n+1 the operator TrXn+1 is relevant. Adding it to the Lagrangian in this range

of parameters drives the theory to a new fixed point — the An+1 theory. By further

4A similar observation relating the anomalous dimensions of X and vacuum stability can also be found

in refs. [34, 35] in the context of four-dimensional N = 1 adjoint SQCD theories. I thank David Kutasov

for a discussion that prompted me to think more about this relation.
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λ

1

2 ?
RX(λ,x)

4x

x−1

nx

x−n

[x]x

x− [x]
λ
∗

5
λ
∗

[x]+1

2

5

2

n+1

2

[x]+1

λ
∗

n+1· · · · · ·

??
RX ,lim

Figure 4. A plot of RX in the Â theory as a function of λ for fixed x. RX interpolates between

its classical value 1
2 and a limiting value RX,lim in the range 1

2([x]+2) < RX,lim < 2
[x]+1 . λ∗n+1 is the

point where the chiral operator TrXn+1 becomes marginal. The critical point nx
x−n

is where the

An+1 theory exhibits spontaneous breaking of supersymmetry.

increasing the coupling in the An+1 theory we reach the SUSY breaking point λSUSY
n+1 where

the supersymmetric vacuum is destabilized. This observation provides an upper bound on

the exact value of λ∗n+1

λ∗n+1 < λSUSY
n+1 =

nx

x− n
. (4.17)

The emerging picture is depicted graphically in figure 4. The R-charge RX decreases

monotonically as we increase λmaking more and more single trace chiral operators TrXn+1

relevant. Beyond the critical coupling λ∗[x]+1, RX approaches a limiting lowest value

RX,lim > 0, which lies somewhere inside the interval
(

1
2([x]+2) ,

2
[x]+1

)
. The lower bound

of this interval arises in the following way.

The scaling dimension of the operator TrX [x]+2 is ∆[x]+2 = ([x] + 2)RX(λ, x). We

cannot exclude the possibility that this operator becomes relevant beyond some coupling,

but even if it does it cannot destabilize the supersymmetric vacuum in the A[x]+2 theory. If

the function RX(λ, x) continues to decrease monotonically towards zero, a value of λ will be

reached eventually where ∆[x]+2 = 1
2 . Beyond this point the operator TrX [x]+2 becomes a

free field and decouples from the rest of the theory. Hence, in this regime, a deformation by

a superpotential interaction linear in TrX [x]+2 will break the supersymmetry, something

that we know from the above analysis cannot happen. We conclude that ∆[x]+2 >
1
2 for all

λ, which implies RX,lim > 1
2([x]+2) .
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A qualitatively similar situation occurs in the four-dimensional analog of this

theory — the IR of the N = 1 adjoint SQCD theory — as we vary the single param-

eter x. In that case, we can compute exactly where the critical values of x lie using

a-maximization [35].

In our case, it would be nice to know how fast an operator TrXn+1 becomes relevant. In

other words, it would be nice to have an estimate of the magnitude of the difference λSUSY
n+1 −

λ∗n+1. Fortunately, such an estimate is within the power of our current considerations.

We have observed that as we increase λ the scaling dimension of the generic chiral

operator TrXn+1, ∆n+1 = (n + 1)RX (λ, x), decreases. If ∆n+1 reaches the unitarity

bound 1
2 at some value of λ, call it λmax

n+1, then beyond this point the operator TrXn+1

becomes free and decouples from the rest of the theory. For reasons similar to the ones

outlined above this cannot happen before we reach the SUSY breaking point λSUSY
n+1 of the

An+1 theory. We can determine λmax
n+1 in the following way.

As we increase λ beyond λ∗n+1, we reach the critical coupling λ∗n′+1 (n′ > n) of an-

other chiral operator TrXn′+1. There is an integer n′ for which TrXn′+1 is marginal and

simultaneously TrXn+1 becomes free. This occurs when

∆n+1 = (n+ 1)RX(λ∗n′+1, x) =
2(n + 1)

n′ + 1
=

1

2
⇔ n′ = 4n+ 3 . (4.18)

This, of course, will be true as long as n′ ≤ [x], i.e. n ≤ [x]−3
4 . Assuming this inequality,

we deduce that

λmax
n+1 = λ∗n′+1 = λ∗4(n+1) (4.19)

and our previous observations imply

λ∗n+1 <
nx

x− n
< λmax

n+1 = λ∗4(n+1) . (4.20)

The second inequality provides a lower bound to λ∗n+1

[
n−3

4

]
x

x−
[
n−3

4

] < λ∗n+1 (4.21)

and gives an estimate to the difference λSUSY
n+1 − λ∗n+1 provided n ≤ [x]−3

4 . At large values

of x, i.e. when Nf ≪ Nc, the combination of the lower and upper bounds (4.21) and (4.17)

gives the inequalities [
n− 3

4

]
< λ∗n+1 < n . (4.22)

4.3 More on Seiberg duality

Let us denote compactly as
˜̂
A the set of U(Nc) N = 2 CSM theories at CS level k without

superpotential interactions that are coupled to Nf quark multiplets qi, q̃
i, an adjoint chiral

superfield Y and n gauge singlet superfieldsMℓ (ℓ = 1, 2, . . . , n), each of which is an Nf×Nf

matrix. The magnetic description of the U(Nc) An+1 theory arises from the U(n(Nf +k)−
Nc)

˜̂
A theory after the superpotential interaction (4.12) is added to the Lagrangian.
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The U(n(Nf + k) − Nc)
˜̂
A theories are superconformal field theories with large-N

parameters

λ̃ =
n(Nf + k) −Nc

k
= n− λ

(
1 − n

x

)
, x̃ =

n(Nf + k) −Nc

Nf
= n+ x

(n
λ
− 1

)
. (4.23)

They are weakly coupled when λ̃ ≪ 1. Assuming n > 3, all the operators appearing in

W̃n+1 (eq. (4.12)) are irrelevant in the perturbative regime, except for the cubic operator

Mnq̃q and the quartic Mn−1q̃Y q. Both of them are relevant (the quartic operator is classi-

cally marginal with perturbatively negative anomalous dimension). Adding the operators

Mnq̃q and Mn−1q̃Y q to the Lagrangian as superpotential interactions drives the theory to

a new interacting fixed point.

More and more terms in the superpotential (4.12) are expected to become relevant

in the
˜̂
A theory as we increase λ̃. Notice that the elementary and composite mesons (Mℓ

and q̃Y n−ℓq respectively) are Legendre-transform conjugate variables in the magnetic

theory. Therefore, depending on whether the term Mℓq̃Y
n−ℓq is relevant or not in the

magnetic superpotential, we should include either Mℓ or q̃Y n−ℓq in the spectrum of

independent operators.

Ultimately, as we increase λ̃ we should encounter a critical coupling λ̃∗n+1 above which

the operator TrY n+1 is relevant and both the electric and magnetic theories flow towards

the An+1 fixed point. We can write this critical coupling as

λ̃∗n+1 = n− λ∗∗n+1

(
1 − n

x

)
(4.24)

In terms of the electric ’t Hooft coupling the magnetic theory enters the phase with λ̃ >

λ̃∗n+1 when

λ
(
−1 +

n

x

)
> λ∗∗n+1

(
−1 +

n

x

)
. (4.25)

Demanding that the An+1 fixed point can be obtained simultaneously by adding the relevant

operator TrXn+1 to the electric theory means x > n and λ > λ∗n+1. All these conditions

can be met if and only if

λ∗n+1 < λ∗∗n+1 < λSUSY
n+1 . (4.26)

Verifying this prediction requires a strong analytic tool — the analog of a-maximization in

four dimensions.

Inside the ‘window’ [λ∗n+1, λ
∗∗
n+1] both the electric and magnetic theories flow to the

same IR fixed point where

RX = RY =
2

n+ 1
. (4.27)

From the remaining R-charges (RQ for Q, Q̃, Rq for q, q̃, and RMℓ
for Mℓ) only one is

independent. The map between electric and magnetic meson fields and the marginality of

the mesonic superpotential interactions implies the relations

RQ +Rq =
2

n+ 1
, RMℓ

=
2(ℓ− 1)

n+ 1
+ 2RQ , ℓ = 1, 2, . . . , n . (4.28)
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Finally, matching the chiral rings and mapping superpotential deformations of the

electric An+1 theory to its magnetic dual is something that can be achieved precisely as

in four dimensions [36]. The classical chiral rings do not match, but the quantum chiral

rings do. Since the adjoint field X in the electric theory is an Nc × Nc matrix it obeys

automatically, by virtue of the Caley-Hamilton theorem, the restrictions that follow from

the characteristic equation

f(X) = 0 , where f(z) ≡ det(z −X) . (4.29)

To obtain the quantum chiral ring, the classical chiral ring relations must be supplemented

by the characteristic equation of the magnetic theory. Analogous statements apply to the

magnetic theory.

Mapping superpotential deformations of the form (4.7) under Seiberg duality entails

the steps taken in the four-dimensional adjoint SQCD theories in [36]. A minor difference

with the analysis of [36] arises from the fact that here we discuss U(Nc), instead of SU(Nc),

gauge groups.

4.4 A special case and comments on holography

Many supersymmetric CSM theories, with prototype the N = 6 CSM theories in [13],

admit a holographic dual description in terms of either string theory or M-theory on some

AdS4 background of the form AdS4 × M, with M being some compact manifold. One

may wonder whether the N = 2 CSM theories in this section have a similar holographic

AdS4 description.

A special case without the usual complications of fundamental matter is the case of

the U(Nc) 1-adjoint CS-SQCD theories with Nf = 0. Besides the superconformal fixed

points Â, labeled by the integers Nc, k, new fixed points An+1 can be obtained by adding

the superpotential interactions

Wn+1 =
g0

n+ 1
TrXn+1 (4.30)

for any integer n ≥ 1 and λ greater than a critical value λ∗n+1. Each of the U(Nc) An+1

theories admits a Seiberg dual description in terms of another An+1 theory at the same

level k but different gauge group U(nk − Nc). The dual description disappears when the

supersymmetric vacuum is spontaneously broken in the original theory. The condition for

the existence of a supersymmetric vacuum in the U(Nc) theory is

Nc ≤ nk ⇔ λ ≤ n . (4.31)

There is a regime, λ ∈ [λ∗∗n+1, n] in the notation of the previous subsection, where the

operator TrXn+1 is an irrelevant operator in the dual description. In that case, Seiberg

duality exchanges an An+1 fixed point with an Â fixed point.

The standard large-N reasoning suggests that these superconformal field theories have

a holographic string theory description. Symmetries imply that this description involves

non-critical strings on some AdS4×S1 background, presumably with curvature of order the

string scale. The symmetries of AdS4 reproduce the field theory superconformal symmetries

and the S1 the internal U(1)R symmetry.
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The possibility of a holographic description for the Â fixed points was also discussed

in [12]. The setup in [12] involves Nc M5-branes wrapping a special Lagrangian Lens space

S3/Zk in a Calabi-Yau three-fold. There is no AdS4 solution for this system in supergravity

which implies that α′ corrections are indeed important.

The An+1 theories are also related to wrapped M5-branes. For example, we can realize

the A2 theory with finite coupling g0 = − k
4π as a special case of the configuration (3.6)

with Nf = 0. This setup is a special case of the configurations analyzed in ref. [17].

Compactifying the x6 direction, T-dualizing, and lifting to M-theory converts the suspended

D3-branes into ‘fractional M2-branes’, i.e. M5-branes wrapping a vanishing 3-cycle at a Zk

orbifold point.

5 Two-adjoint theories: RG flows from the Ô theory

So far we have discussed N = 2 CSM theories with an arbitrary number of

fundamental/anti-fundamental pairs of chiral multiplets and one adjoint chiral multiplet.

These theories comprise a small set in the larger domain of N = 2 theories with two, instead

of one, chiral superfields. In this section, we will explore RG flows and fixed points in this

wider setup. The zoo of N = 1 superconformal field theories with two adjoint chiral super-

fields in four dimensions was discussed, using a-maximization techniques, in ref. [27]. In

that work an intriguing ADE classification of fixed points was observed. We will find that a

subset of our three-dimensional superconformal field theories admits a similar classification.

5.1 Relevant deformations to Â, D̂, Ê

Our starting point is a theory which, mimicking [27], we will call the Ô theory. By def-

inition, this theory is a U(Nc) N = 2 CSM theory at level k coupled to Nf pairs of

fundamental/anti-fundamental chiral superfields and two chiral superfields in the adjoint

representation. We will denote the adjoint chiral superfieldsX andX ′. The Ô theory has no

superpotential interactions. It is superconformal by the arguments of ref. [12] and possesses

the global symmetry group SU(Nf )×SU(Nf )×SU(2)×U(1)X×U(1)R. The SU(2) symme-

try rotates the (X,X ′) doublet. Because of this symmetry the U(1)R charges of X and X ′

are identical and will be denoted by RX , which is a function of the parameters k,Nc, Nf .

The chiral ring includes single trace operators of the form TrXnX ′n′

(n, n′ = 0, 1, . . .)

up to arbitrary permutations of the fields X, X ′ inside the trace. The scaling dimension

of such operators is

(n+ n′)RX(Nc, Nf , k) . (5.1)

Hence, any of the (n, n′) operators is relevant when

RX(Nc, Nf , k) <
2

n+ n′
. (5.2)

In that case, we can add the operator to the Ô Lagrangian as a superpotential interaction

to generate an RG flow towards a new IR fixed point.
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As in the analysis of the previous sections we expect the function RX to decrease

as λ becomes larger and larger and the gauge interactions stronger. This can be verified

explicitly with a two-loop calculation in the perturbative regime [12]

RX(λ, x) ∼ 1

2
−

(
3 +

4

3x

)
λ2 + · · · . (5.3)

Since we have very limited information about the non-perturbative behavior of the function

RX , we will concentrate, in what follows, to operators that are either already classically

relevant or classically marginal but quantum mechanically relevant.

Deformations involving only the operators TrX, TrX ′ will not be considered since

they lead to F-term equations that cannot be solved. We will consider the following (in-

equivalent) quadratic and cubic superpotential deformations:

(1) W = TrXX ′. In this case, both chiral superfields X, X ′ are massive and the RG

flow interpolates between the Ô theory and CS-SQCD with Nf flavors.

(2) W = TrX ′2. The chiral superfield X ′ is massive and can be integrated out. The IR

fixed point is the Â theory that was analyzed in the previous section.

(3) W = TrXX ′2. The RG flow leads to a new IR fixed point, which we will call the D̂

theory.

(4) W = TrX ′3. The IR fixed point arising from this RG flow will be named Ê.

The (inequivalent) quartic deformations W = TrX4,TrX3X ′,TrX2X ′2,TrXX ′XX ′

are marginal at λ = 0 but relevant at λ > 0. The generated RG flows are a special case

of the flows studied in perturbation theory in [12]. We will not have anything new to add

concerning this case. Instead, we will proceed to examine RG flows away from the Â, D̂,

Ê theories which have certain similarities with RG flows in two-dimensional N = (2, 2)

Landau-Ginzburg models and four-dimensional N = 1 SQCD theories with two adjoints.

5.2 Flows from Â → An+1

RG flows from the Â theory to An+1 fixed points occur when the superpotential W =

TrXn+1 is relevant. The conditions for this to happen were explored in the previous

section. We have not shown explicitly that the IR of this RG flow is indeed a fixed point

of the β-function. This is a hard question because the An+1 theory is non-perturbative for

generic n. The only exception is the case n = 3, i.e. the case of a quartic deformation.

Here one can show the existence of a perturbative fixed point with a two-loop computation

of the β-function [12].

5.3 Flows from D̂ → Dn+2

The D̂ theory arises from the Ô theory after the deformation by the superpotential interac-

tion WbD
= TrXX ′2. In this theory the chiral ring of gauge invariant operators is subject

to the relations coming from the WbD
equations of motion

∂X′WbD
= {X,X ′} = 0 , ∂XWbD

= X ′2 = 0 . (5.4)
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The first equation is particularly convenient, because we can use it to freely re-order the

fields X, X ′ inside traces (up to a minus sign). Using these equations we find that the

chiral ring is generated by the single trace operators

TrXℓ , ℓ ≥ 1 , TrX ′ (5.5)

and the meson operators

Mℓ,s = Q̃XℓX ′sQ , ℓ ≥ 0 , s = 0, 1 . (5.6)

Note that TrXnX ′ = 0 because of the first equation in (5.4) and the cyclicity of the trace.

In the D̂ theory the superpotential interaction WbD
is marginal and imposes the follow-

ing constraint on the R-charges

RX + 2RX′ = 2 . (5.7)

Hence, the independent R-charges that need to be determined as functions of the pa-

rameters k,Nc, Nf are the R-charge RX of X and the common R-charge RQ of the

(anti)fundamental multiplets Q, Q̃.

Any of the chiral operators (5.5), (5.6) can be used to deform the Lagrangian of the D̂

theory. We will focus on superpotential deformations involving the first set (5.5). Without

prior knowledge of the R-charges RX , RX′ it is unclear which of these deformations are

relevant and if so for what range of parameters. If this case is similar to the Â theory

we might expect that RX decreases as we increase λ and, because of eq. (5.7), at the

same time RX′ increases. Assuming this is true, and that there is a range of parameters

where the operator TrXn+1 is relevant, we can deform by the superpotential interaction

∆W = TrXn+1 to flow towards a tentative new fixed point which we will call Dn+2. In

what follows, we will argue in favor of these flows and will propose that the Dn+2 fixed

points exist and exhibit non-trivial properties, among them Seiberg duality.

Before proceeding further, notice that the n = 1 deformation involves the superpo-

tential

Wn=1 =
g

2
TrX2 + aTrXX ′2 . (5.8)

The field X is massive in this case and by integrating it out we get the low energy

superpotential

W = −a
2

2g
TrX ′4 . (5.9)

In this way, we recover the 1-adjoint CS-SQCD fixed point A4.

5.3.1 Stability bounds and their consequences

The crucial element that allowed us in the Â theories to determine the qualitative behavior

of the R-charge RX was a bound on λ for the stability of the supersymmetric vacuum in

the An+1 theories. We could read these bounds directly from the s-rule in a string theory

setup, or by deforming slightly the superpotential (as in eq. (4.7)), flowing to a product

of CS-SQCD vacua and then using the condition for the existence of a supersymmetric

vacuum in CS-SQCD. We can repeat the second argument in the Dn+2 field theories. A
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similar analysis was performed in ref. [27] for the four-dimensional Dn+2 theories. Since

the argument is identical in our case we will focus on the main points highlighting elements

particular to our case and defer the reader to [27] for additional details.

The core of the argument centers around the precise way in which the chiral ring

truncates in the presence of the Dn+2 superpotential

WDn+2
= TrXn+1 + TrXX ′2 . (5.10)

For simplicity, we keep the superpotential coefficients in front of each term implicit. The

relations coming from this superpotential are

{X,X ′} = 0 , Xn +X ′2 = 0 . (5.11)

What happens to the chiral ring depends crucially on whether n is odd or even.

For odd n there is a drastic truncation of the chiral ring. Using the relations (5.11)

one can show that X ′3 = 0. The classical chiral ring includes the single trace operators

TrXℓ−1 , ℓ = 1, . . . , n , TrX ′ , TrX ′2 , TrX2mX ′2 , m = 1, . . . ,
n− 1

2
, (5.12)

where the order of X and X ′ does not matter because of the first relation in (5.11), and

the 3nN2
f mesons

Mℓ,s = Q̃Xℓ−1X ′s−1
Q , ℓ = 1, . . . , n , s = 1, 2, 3 . (5.13)

To determine the conditions for the existence of a supersymmetric vacuum we deform

the superpotential WDn+2
by lower order terms

W = Tr
(
Fn+1(X) +XX ′2 +X ′

)
(5.14)

where Fn+1(X) is a degree n + 1 polynomial in X. The F-term equations for this super-

potential are

{X,X ′} = −1 , X ′2 + ∂XFn+1(X) = 0 . (5.15)

The vacua of the field theory are solutions of these equations. The irreducible representa-

tions of the algebra defined by (5.15) are n+2 different one-dimensional representations and
n−1

2 two-dimensional representations [27, 37]. The general vacuum has ra copies of the a-th

one-dimensional representation (a = 1, . . . , n+2), and sb copies of the b-th two-dimensional

representation (b = 1, . . . , n−1
2 ). In such a vacuum the gauge group is Higgsed to

U(Nc) →
n+2∏

a=1

U(ra)

n−1

2∏

b=1

U(sb) with
n+2∑

a=1

ra +

n−1

2∑

b=1

2sb = Nc (5.16)

and both adjoint chiral superfields are massive. Each U(ra) factor has Nf pairs of flavor

multiplets and each U(sb) factor 2Nf flavor pairs [27]. Hence, each factor is a CS-SQCD

theory with some number of flavor multiplets (Nf or 2Nf ). The condition for the existence

of a supersymmetric vacuum in CS-SQCD (see eq. (2.4)) implies for the product (5.16)

ra ≤ Nf + k , sb ≤ 2(Nf + k) , a = 1, . . . , n+ 2 , b = 1, . . . ,
n− 1

2
. (5.17)

– 25 –



J
H
E
P
0
5
(
2
0
0
9
)
0
5
4

Summing up these inequalities we obtain a condition for the existence of a supersymmetric

vacuum in the Dn+2 theory

Nc ≤ 3n(Nf + k) . (5.18)

Notice that for n = 1 this formula reproduces the condition (4.11) for the A4 theory which

is consistent with the observation in eq. (5.9) that D3 is essentially the A4 theory.

For even n the situation is more complex. In this case, the classical chiral ring does

not truncate and a bound like (5.18) cannot be derived classically. However, a bound may

exist at the quantum level. The fact that we can add a superpotential deformation ∆W =

TrXn′+1 to the Dn+2 theory with n′ < n, n odd and n′ even, to flow from the Dn+2 theory to

the Dn′+2 theory suggests that the even n theories also have a stability bound. This is based

on the natural expectation that by adding a more relevant term to the superpotential it will

be easier for the vacuum to get destabilized. A natural hypothesis is that the stability bound

for n even continues to obey the same form that was found in eq. (5.18). Further motivation

for this hypothesis will be provided in a moment. In four-dimensional N = 1 adjoint SQCD

theories of the Dn+2 type this assumption is corroborated by the a-conjecture [27].

Assuming the validity of (5.18) for all n as a working hypothesis, we can deduce a

qualitative picture for the λ-dependence of the R-charge RX in the D̂ theory, which is

similar to that in the 1-adjoint Â theory. In terms of the ’t Hooft parameters λ, x a

supersymmetric vacuum exists in the Dn+2 theory for all λ if x ≤ 3n, and for λ such that

λ ≤ λSUSY
n+2 =

3nx

x− 3n
(5.19)

for x > 3n. Hence, as we increase λ in the D̂ theory the R-charge RX decreases and for

n < x
3 the operator TrXn+1 becomes marginal at a critical coupling

λ∗n+2 < λSUSY
n+2 =

3nx

x− 3n
. (5.20)

The qualitative behavior of RX is the same as in figure 4 with the obvious modifications.

The analog of the inequalities (4.22) is

3

[
n− 3

4

]
< λ∗n+2 < 3n . (5.21)

The behavior of RX′ is fixed in terms of the relation (5.7).

5.3.2 Seiberg-Brodie duality

It has been argued [38] that the four-dimensional Dn+2 theories exhibit Seiberg duality.

It is tempting to propose that the Dn+2 CSM theories in this section also exhibit Seiberg

duality augmenting the known list of N = 2 Chern-Simons theories with Seiberg duals.

Previous experience with Seiberg duality in N = 2 CSM theories [25, 26] shows that the

rank of the dual gauge group encodes the spontaneous supersymmetry breaking boundary

of the original theory in a simple fashion. Extending this feature to the Dn+2 theories we

propose that they have a dual magnetic description in terms of an N = 2 CSM theory at the
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same level k and gauge group U(3n(Nf+k)−Nc).
5 The matter content and the superpoten-

tial interactions of the dual magnetic theory are partially fixed by the chiral ring structure.

The details work as in four dimensions, hence we propose that the matter content of the dual

theory includesNf pairs of (anti)fundamental multiplets qi, q̃
i, two adjoint chiral superfields

Y, Y ′ and 3nN2
f gauge singlets (Mℓ,s)

i
j (ℓ = 1, . . . , n, s = 1, 2, 3, i, j = 1, . . . , Nf ), which are

the magnetic duals of the meson operators (5.13). The dual tree-level superpotential is

W̃Dn+2
= TrY n+1 + TrY Y ′2 +

n∑

ℓ=1

3∑

s=1

Mℓ,sq̃Y
n−ℓY ′3−sq . (5.22)

Weak evidence for the validity of this duality is presented in appendix B.

When 3n < x this duality works as a strong/weak duality. The magnetic ’t Hooft

coupling λ̃ is related to the electric coupling λ in the following way

λ̃ = 3n−
(

1 − 3n

x

)
λ . (5.23)

Repeating the discussion of section 4.3 we anticipate a window [λ∗n+2, λ
∗∗
n+2] inside which

both TrXn+1 and its dual TrY n+1 are relevant operators.

5.4 Flows from Ê

The Ê theory arises from the Ô theory after the superpotential deformation

WbE
= TrX ′3 . (5.24)

The equations of motion for this superpotential impose the classical chiral ring relation
X ′2 = 0 and truncate the chiral ring of the Ô theory to the operators

TrXi1 · · ·Xin
, Q̃Q , Q̃Xi1 · · ·Xin

Q , with i1, i2 · · · = 1, 2 , X1 = X , X2 = X ′ , n = 1, 2, . . .

(5.25)

with the provision that there are no adjacent X ′ operators in the above combinations

(including adjacency via cyclic permutation).

In the Ê theory the R-charge of the X ′ field is fixed by the superpotential

RX′ =
2

3
. (5.26)

What remains to be computed are the common R-charge RQ of the quarks Q, Q̃, and the

R-charge RX of the adjoint field X.

Since we lack an exact analytic tool that allows us to compute these charges we will

restrict our attention to the weak coupling regime and deformations that involve only the

single trace operators of the adjoint fields. To leading order in λ, RX has the classical value
1
2 . Hence, any superpotential deformation of the form

∆W = TrXi1 · · ·XiN , N = n+ n′ (5.27)

5A dual rank of this universal form, independent of whether n is even or odd, is further motivation for

the postulated extension of the inequality (5.18) to n even.
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with n insertions of X and n′ insertions of X ′ will be relevant as long as

2n′

3
+
n

2
< 2 ⇔ 4n′ + 3n < 12 . (5.28)

This inequality allows several possibilities.

The linear deformation by TrX gives F-term equations that cannot be solved, hence

it is discarded. The linear deformation by TrX ′ is, however, allowed.

There are three quadratic deformations giving rise to the following RG flows

∆W = TrX ′2 , Ê → Â , (5.29a)

∆W = TrX2 , Ê → A3 , (5.29b)

∆W = TrXX ′ , Ê → CS − SQCD . (5.29c)

Finally, the inequality (5.28) allows the cubic deformation

∆W = TrX2X ′ , Ê → D4 . (5.30)

The deformation ∆W = TrX3 is equivalent to TrX2X ′ via a change of variables.

It is natural to expect that as we increase the coupling λ the R-charge RX will receive

more and more negative contributions from the gauge interactions allowing for higher

degree relevant superpotential deformations. It is impossible, however, to determine if and

when this happens without more detailed information. In this respect, it is worth pointing

out that in four dimensions the only (independent) higher degree deformations (becoming

relevant at some range of parameters) are [27]

E6 : ∆W = TrX4 , (5.31a)

E7 : ∆W = TrX3X ′ , (5.31b)

E8 : ∆W = TrX5 . (5.31c)

It is an interesting problem to determine if there is a similar pattern in our CSM theories

in three dimensions.

5.5 Comments on mesonic deformations

Our list of RG flows from the Ô theory above is certainly not exhaustive and admits more

possibilities. Another large class of RG flows is generated by superpotential deformations

involving mesonic operators.

An example is provided by the superpotential deformation

∆W = Q̃iXQ
i (5.32)

in the Ô theory. Classically this cubic deformation is relevant and leads to a new fixed

point which, again following the four-dimensional nomenclature of [27], we will call ÔM.

Further deformations of this theory by single trace chiral operators are possible and will

be discussed in the next section.

– 28 –



J
H
E
P
0
5
(
2
0
0
9
)
0
5
4

Another possibility, which is visible at weak coupling, involves the quartic meson

operators Q̃X2Q and Q̃XX ′Q. These operators are classically marginal, but receive

negative anomalous dimensions and generate flows that can be described in perturbation

theory as in ref. [12].

In general, deformations by higher order mesonic operators, e.g. Q̃XℓQ, may be pos-

sible, but precise knowledge of whether and when these operators can become relevant

depends on information about the R-charge RQ for which we have not been able to say

much in this paper.

6 RG flows from the ÔM theory

6.1 Input from a Hanany-Witten setup

It is instructive to consider a straightforward generalization of the brane configuration ap-

pearing in figure 1 where instead of one NS5-brane and one (1, k) fivebrane bound state we

consider n NS5-branes and n′ (1, k) fivebrane bound states (n, n′ = 1, 2, . . .). To summarize

the configuration we have

n NS5 : 0 1 2 3 4 5

n′ (1, k) : 0 1 2

[
3

7

]

θ

8 9

Nc D3 : 0 1 2 |6|
Nf D5 : 0 1 2 7 8 9 (6.1)

with the angle θ given by eq. (2.3).

The low energy effective field theory that describes the dynamics of this system is a

U(Nc) N = 2 CSM theory at level k coupled to Nf (anti)fundamentals Qi, Q̃i and two

adjoint chiral superfields X, X ′. As in section 4, the fields X, X ′ are present to describe

fluctuations of the D3-branes along the (89) and the (45) planes respectively. There is also

a non-trivial superpotential [39]

Wn,n′ =
g0

n+ 1
TrXn+1 +

g′0
n′ + 1

TrX ′n′+1
+

Nf∑

i=1

mQ̃iX
′Qi . (6.2)

The third mesonic superpotential interaction encodes an important difference between the

X and X ′ fields. When we displace the n′ (1, k) bound states along the (45) plane, leaving

the D5-branes fixed, we make the quark multiplets Q and Q̃ massive with the same mass

of order 〈X ′〉. This effect is accounted for by the Yukawa superpotential coupling m. Its

presence breaks the global SU(Nf ) × SU(Nf ) flavor symmetry to a diagonal SU(Nf ).

The analysis of the vacuum structure of this configuration suggests that the matricesX,

X ′ can be diagonalized independently [39]. Ref. [40] proposed that the superpotential Wn,n′

includes an additional quartic coupling Tr[X,X ′]2 for which we will have little to say here.

From the brane configuration and the s-rule of brane dynamics we read off the following

condition for the existence of a supersymmetric vacuum

Nc ≤ nNf + nn′k . (6.3)
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As a trivial check, for n′ = 1 the field X ′ is massive. In that case, it can be integrated out

to obtain the An+1 theory and eq. (6.3) reproduces eq. (4.11).

Another interesting piece of information that we obtain from this brane configuration

is Seiberg duality in a large class of 2-adjoint CS-SQCD theories. By moving the Nf D5-

branes and the n′ (1, k) bound states along the x6 direction past the n NS5-branes we obtain

a configuration similar to the one appearing in figure 1(b). This configuration comprises

now of nNf flavor D3-branes and n(Nf + n′k) − Nc color D3-branes and realizes a dual

magnetic description of the original theory. This description is provided by an N = 2 CSM

theory with gauge group U(n(Nf +n′k)−Nc), CS level k and the following matter content:

Nf quark pairs qi, q̃
i, two adjoint chiral superfields Y, Y ′ and n magnetic meson fields Mℓ

(ℓ = 1, . . . , n), each of which is an Nf ×Nf matrix. There is a non-trivial superpotential

W̃n,n′ =
g̃0

n+ 1
TrY n+1 +

g̃′0
n′ + 1

TrY ′n′+1
+

Nf∑

i=1

m̃q̃Y ′q +

n∑

ℓ=1

Mℓq̃Y
n−ℓq (6.4)

with a possible Tr[Y, Y ′]2 term as in the electric theory. A four-dimensional analog of this

duality was formulated in [39].

The theories appearing in this context can be regarded as deformations of the 2-adjoint

ÔM CSM theories defined in the previous section. In what follows we will explore some of

the consequences that the above statements have for their dynamics.

6.2 Special case: n = 1, n′ ≥ 1

We mentioned that the special case n ≥ 1, n′ = 1 reduces (by integrating out the massive

X ′ field) to the An+1 theories which were analyzed before. Another interesting special case

is the one with n = 1 and n′ > 1. In this case the superfield X is massive and can be

integrated out. Then, one is left with an 1-adjoint CS-SQCD theory with superpotential

Wn′+1 =
g′0

n′ + 1
TrX ′n′+1

+

Nf∑

i=1

miQ̃iX
′Qi . (6.5)

In the brane construction all mi are equal.

We can view this theory as another deformation of the Â theory. Adding the classically

relevant superpotential interaction Q̃X ′Q to the Lagrangian we flow towards a new set of

IR fixed points, which we will call collectively ÂM. Then, we deform further to a new set

of theories AM,n′+1 by adding the superpotential interactions TrX ′n′+1. Notice that the

special case n′ = 1 with g′0 = − k
4π reproduces the theory (3.7) which flows to an N = 3

fixed point with a quartic superpotential for the quarks.

The s-rule derived condition for the existence of a supersymmetric vacuum in the

AM,n′+1 theories is

Nc ≤ Nf + n′k . (6.6)

For Nc > Nf , i.e. x > 1, it implies that as we increase the coupling λ in the ÂM theory

the R-charge of X ′, RX′ , decreases while more and more single trace operators TrX ′n′+1
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are becoming sequentially relevant. The value of the coupling where TrX ′n′+1 becomes

marginal is

λ∗n′+1 < λSUSY
n′+1 =

n′x
x− 1

. (6.7)

A picture similar to the one depicted in figure 4 for the An+1 theory is emerging with an

important difference. Assuming x > 1, a spontaneous breaking of supersymmetry occurs in

the present case for arbitrarily large n′. Therefore, RX′,lim = 0 and any operator TrX ′n′+1

can become relevant as long as we make the coupling λ large enough. Furthermore, when

all mi are equal the R-charges of the quarks Qi, Q̃i are also equal and can be denoted by a

single function RQ. In the ÂM theory the mesonic superpotential interaction is marginal,

hence there is a simple relation between RQ and RX′

RQ = 1 − 1

2
RX′ . (6.8)

Seiberg duality relates this theory to a U(Nf +n′k−Nc) magnetic version with a single

adjoint chiral superfield Y ′ and Nf pairs of quarks qi, q̃
i. The magnetic superpotential is

W̃n′+1 =
g′0

n′ + 1
TrY ′n′+1

+

Nf∑

i=1

m̃iq̃
iY ′qi . (6.9)

Comparing with the dual superpotential (4.12) we observe that the n′ elementary meson

superfields Mℓ are absent. Duality in this case acts in a self-similar way exchanging the

rank of the gauge groups Nc ↔ Nf + n′k −Nc but not the form of the interactions. This

generalizes the example presented in section 3.2.1.

We can also understand this duality as an mi-deformation of Seiberg duality in the

An′+1 case. From this point of view the magnetic theory has gauge group U(n′(Nf+k)−Nc)

and superpotential

Ŵn′+1 =
g′0

n′ + 1
TrY ′n′+1

+
n′∑

ℓ=1

Mℓq̃Y
′n′−ℓ

q +

Nf∑

i=1

mi(M2)
i
i . (6.10)

Repeating the analysis of appendix A in [39] we recover the dual description presented

above. Many degrees of freedom are massive in the presence of the last term in (6.10)

and by integrating them out we recover the dual gauge group U(Nf + n′k − Nc) and the

superpotential (6.9).

6.3 Consequences for R-charges and RG flows

In the general (n, n′) case the condition for the existence of a supersymmetric vacuum can

be written in terms of the parameters λ, x as

λ ≤ λSUSY
n,n′ =

nn′x
x− n

. (6.11)

There is spontaneous supersymmetry breaking if x > n and λSUSY
n,n′ is the maximum value

of the coupling.
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Once again, this property shows that as we increase λ in the undeformed theory, the

R-charges RX and RX′ decrease making more and more single trace operators relevant. At

sufficiently large coupling, beyond a critical value λ∗n,n′ < λSUSY
n,n′ , the operator αn TrXn+1+

α′
n′ TrX ′n′+1 becomes relevant in the 2-adjoint ÔM theory and drives it to a new set of IR

fixed points. From this submanifold of fixed points further deformations with lower power

(more relevant) single trace operators is possible. This picture implies a vast set of fixed

submanifolds and RG flows connecting them. It would be interesting to obtain a better

understanding of these theories.

In conclusion, we find that the N = 2 Landau-Ginzburg-like CSM theories in this

section exhibit a rich structure that bears many similarities with the structure familiar from

analogous four-dimensional N = 1 SQCD theories. Several features, however, are new in

three dimensions compared to the four-dimensional case. For example, there are situations

where the R-charges decrease more in three dimensions and the destabilization of the

supersymmetric vacuum becomes more efficient. For instance, comparing the models with

superpotential (6.5) in three and four dimensions we detect a region of parameters without

a supersymmetric vacuum in three dimensions, but no such region in four dimensions [39].

Also, in our three-dimensional 2-adjoint ÔM theories we detect a large set of relevant

deformations. A quick calculation of R-charges with a-maximization techniques in the

four-dimensional ÔM theory reveals that both R-charges RX and RX′ asymptote to a finite

value around 1
2 at large x allowing for only a limited set of relevant deformations.

7 Discussion

In this paper we considered N = 2 Chern-Simons theories with U(Nc) gauge group coupled

to Nf pairs of chiral superfields in the (anti)fundamental representation and zero, one or

two chiral superfields in the adjoint. In the absence of superpotential interactions these

theories are classically and quantum mechanically superconformal (at least within a range

of parameters). Superpotential interactions can be added to generate RG flows towards new

IR fixed points. The resulting theories can be viewed as three-dimensional generalizations

of N = (2, 2) Landau-Ginzburg models in two dimensions and bear many similarities with

N = 1 (adjoint) SQCD theories in four dimensions.

Using properties like spontaneous breaking of supersymmetry and Seiberg duality

we obtained:

(1) a list of semi-quantitative non-perturbative features of U(1)R symmetries,

(2) a web of RG flows,

(3) the postulation of new interacting fixed points partially admitting an ADE classifi-

cation,

(4) interesting parallels between three- and four-dimensional gauge theories.

In the process, we argued for a set of new examples of Seiberg duality in three-

dimensional CSM theories.
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Our discussion provides an ample demonstration of the rich dynamics of Chern-Simons

theories coupled to matter. It is of intrinsic interest to develop exact analytic methods that

will allow us to study these properties further and beyond perturbation theory.

One can think of several applications in string/M theory. For example, the low-energy

dynamics of N M2-branes in flat space is described by a quiver U(N)×U(N) CSM theory at

level 1 with enhanced N = 8 supersymmetry [13]. This theory is strongly coupled. In this

and other cases, CSM theories have a dual gravitational description in string or M theory.

In all these cases, knowledge about the strong coupling dynamics of the CSM theories is

useful not only per se but also for the dual four-dimensional quantum gravity description.

Some related more concrete questions that arise from this work are as follows.

What determines the R-symmetry in N = 2 supersymmetric CSM theories?

In three-dimensional superconformal field theories with N = 2 supersymmetry we would

like to know if there is an exact analytic method that determines the U(1)R symmetry.

We have seen that this symmetry can receive large non-perturbative contributions. In

four-dimensional gauge theories with the same amount of supersymmetry, i.e. N = 1

supersymmetry, the exact U(1)R symmetry is determined by a-maximization [20]. This

method boils down to maximizing a function a that can be expressed as a linear com-

bination of ’t Hooft anomalies. The method relies heavily on the ability to identify the

candidate R-symmetries in the weakly coupled UV regime, so sometimes more than just

weak coupling data is needed to make this method practical. In some cases, this extra

information is provided by Seiberg duality [35].

It is natural to ask if there is a similar principle at work in three-dimensional gauge the-

ories with N = 2 supersymmetry, and more specifically in N = 2 CSM theories. Anomalies

of continuous symmetries are absent in three dimensions, so if there is an analog of a in

three dimensions it will be expressible in a different way.

In four dimensions the function a has been conjectured to be a good candidate for a

c-function [20, 41, 42] (see, however, [43]), i.e. a function that is positive and monotonically

decreasing along RG flows — Zamolodchikov’s c-function in two-dimensional quantum field

theory being the prototype example [44]. One wonders whether a tentative a function in

three dimensions would also be a good candidate for a c-function. Defining a c-function

in three dimensions is a notoriously difficult problem (for work related to this problem

see [45, 46]).

Another interesting question is whether we can relate the N = 2 CSM theories to two-

dimensional quantum field theories and thus obtain some answers to the above questions

from a two-dimensional perspective. The N = 2 Chern-Simons theory with gauge group

G becomes, after integrating out the fermions, a bosonic Chern-Simons theory (1.1) at the

shifted level

k′ = k − h

2
sgn(k) (7.1)

where k is the N = 2 CS level and h the dual Coxeter number of the gauge group G [30].

This theory, which is a topological quantum field theory, is known to be equivalent to the
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(chiral) WZW model with gauge group G and level k′ [7].6 We may ask whether a more

general 2d/3d connection persists for CS theories coupled to matter, e.g. when the three-

dimensional CS theory is placed on a manifold with a two-dimensional boundary. This

question is also relevant for the dynamics of M2-branes ending on an M5-brane. In fact, this

may be a way to capture the dynamics of the self-dual string on the M5-brane worldvolume

from the boundary dynamics of the CSM theory that lives on the M2-brane worldvolume.

RG flows and the ADE classification. In section 5 we presented a subclass of RG

flows which appear to admit an ADE classification. It would be interesting to establish the

precise range of parameters where these RG flows take place and prove the assertion that

the theories that describe the IR dynamics of these flows are superconformal. In some cases,

e.g. the case of the En theories, the precise range of the parameter n needs to be determined.

Assuming that a complete ADE classification takes place in the above subclass of RG

flows, it would be interesting to explore if there is a deeper connection with other cases

where the ADE classification occurs. For example, in two-dimensional N = (2, 2) theories

the ADE superpotentials are special because they lead to the ĉ < 1 minimal models in

which all elements of the chiral ring are relevant operators [48, 49]. Perhaps some of the

well known results in two-dimensional N = (2, 2) superconformal field theories, e.g. the su-

perconformal Poincare polynomial of R-charges and other properties of critical points [50],

can be extended to the three-dimensional N = 2 CSM theories presented in this paper.

Acknowledgments

I would like to thank Elias Kiritsis, David Kutasov, Georgios Michalogiorgakis and Carlos
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A Supersymmetries of a Hanany-Witten setup

In this appendix we review the amount of supersymmetry preserved by the configura-

tion (3.8). We will find it convenient to work in M-theory following the analysis of [29].

Without the Nf D5-branes the M-theory version of (3.8) is

Nc M2 : 016

M5 : 012345

(1, k) M5′ : 012

[
3

7

]

θ

89 (A.1)

6Incidentally, from this perspective a three-dimensional interpretation of the two-dimensional central

charge c was given in [47].
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The supersymmetry preserving conditions for these branes are

M2 : Γ016ǫ = ǫ , (A.2a)

M5 : Γ012345ǫ = ǫ , (A.2b)

M5′ : RΓ012345R
−1ǫ = ǫ (A.2c)

where R is the rotation matrix (|| denotes the 11th direction)

R = e
θ
2
(Γ2||+Γ37)−π

4
(Γ48+Γ59) (A.3)

and Γ∗ are eleven-dimensional Γ-matrices. Ref. [29] shows that this configuration preserves

N = 2 supersymmetry in three dimensions.

Now we add Nf M5-branes along

M̃5 : 017

[
4

8

]

ψ

[
5

9

]

ψ

|| . (A.4)

These branes do not reduce the supersymmetry any further. Indeed, the supersymmetry

preserving condition for each of these branes is

R̂Γ01789||R̂
−1ǫ = ǫ (A.5)

with the obvious ψ-dependent rotation matrix. Since

Γ0123456789|| = 1 ⇒ Γ01789|| = Γ016Γ012345 (A.6)

and

Γ012345R̂
−1 = R̂Γ012345 , Γ016R̂ = R̂−1Γ016 (A.7)

we deduce that eq. (A.5) follows from the pre-existing conditions (A.2a), (A.2b). Hence,

no more supersymmetries are broken by the rotated D5-branes in the configuration (3.8).

B Evidence for Seiberg duality in the Dn+2 theories

In this appendix we provide some evidence for the duality proposed in subsection 5.3.2.

The electric theory is a U(Nc) N = 2 CSM theory at level k coupled to Nf pairs

of (anti)fundamental chiral superfields Qi, Q̃i and two adjoint chiral superfields X,X ′

with superpotential

WDn+2
=

g

n+ 1
TrXn+1 + g′ TrXX ′2 . (B.1)

The proposed magnetic theory is a U(3n(Nf + k)−Nc) N = 2 CSM theory at level k cou-

pled to Nf pairs of (anti)fundamental chiral superfields qi, q̃
i, two adjoint chiral superfields

Y, Y ′ and 3nN2
f gauge singlet superfields (Mℓs)

i
j (ℓ = 1, . . . , n, s = 1, 2, 3, i, j = 1, . . . , Nf )

with superpotential

W̃Dn+2
=

g̃

n+ 1
TrY n+1 + g̃′ TrY Y ′2 +

n∑

ℓ=1

3∑

s=1

Mℓsq̃Y
n−ℓY ′3−sq . (B.2)
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The couplings in front of the meson superpotential interactions are kept implicit.

The mesonic part of the magnetic superpotential respects the global SU(Nf )×SU(Nf )

symmetry and is such that the composite magnetic mesons

M̃ℓs ≡ q̃Y ℓ−1Y ′s−1
q , ℓ = 1, . . . , n , s = 1, 2, 3 (B.3)

are related to the elementary fields Mℓs by Legendre transform. The Legendre conjugate

pairs are Mℓs and M̃n+1−ℓ,4−s. When the corresponding term in W̃Dn+2
is relevant we

should include Mℓs in the spectrum of independent operators and drop M̃n+1−ℓ,4−s. Then,

by Seiberg duality the elementary fields Mℓs are mapped to the electric composite meson

superfields Q̃Y ℓ−1Y ′3−sQ.

Giving a complex mass to one of the quarks in the electric theory,

WDn+2
→ g

n+ 1
TrXn+1 + g′ TrXX ′2 +mQ̃Nf

QNf (B.4)

we can integrate out the massive quarks Q̃Nf
, QNf and flow to a Dn+2 theory with Nf − 1

quark pairs.

On the magnetic side this deformation corresponds to the superpotential

W̃n+2 → g̃

n+ 1
TrY n+1 + g̃′ TrY Y ′2 +

n∑

ℓ=1

3∑

s=1

Mℓsq̃Y
n−ℓY ′3−sq +m(M1,1)

Nf

Nf
. (B.5)

The F-term equation for the meson (M1,1)
Nf

Nf
reveals that the Legendre conjugate composite

meson M̃n,3 acquires a vacuum expectation value

q̃NfY n−1Y ′2qNf
= −m . (B.6)

Solving the full set of F-term equations and the D-flatness conditions we obtain

non-vanishing expectation values for the quarks q̃Nf , qNf
and the adjoint scalars

Y, Y ′. Before giving the solution we make a short parenthesis to discuss explicitly the

D-flatness conditions.

The relevant terms from the N = 2 CSM Lagrangian are

LD =
k

2π
Dα
βσ

β
α −

Nf∑

i=1

(
q†iβ(σ

2)βαq
α
i + q̃†iβ(σ2)αβ q̃

i
α − q†iβD

β
αq

α
i + q̃†iαDβ

αq̃
i
β

)

−[σ, Y ]†βα [σ, Y ]αβ − [σ, Y ′]†βα [σ, Y ′]αβ + Y †β
α [D,Y ]αβ + Y ′†β

α [D,Y ′]αβ . (B.7)

α, β are gauge indices for the fundamental representation and σ,D are scalars in the N = 2

vector mulitplet. The Dα
β act as Lagrangre multipliers whose equations of motion give

σβα = −2π

k



Nf∑

i=1

(
q†iαq

β
i − q̃†iβ q̃iα

)
+ [Y †, Y ]βα + [Y ′†, Y ′]βα


 . (B.8)

Inserting this expression back into (B.7) we obtain the D-term potential, which we require

to vanish.
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As an example, we consider the case with n = 2, Nc = 10, Nf = 2 and k = 1. The dual

gauge group is U(8). A solution that satisfies all the F-term equations and the D-flatness

conditions has (for simplicity we set g̃ = g̃′ = 1)

q̃
Nf
α = −

(m
2

)1/5
δα,1 , qαNf

= −
(m

2

)1/5
δα,6 , (B.9a)

Y = −
(m

8

)1/5




0
√

2 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 −
√

2 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0




, (B.9b)

Y ′ = −
(m

8

)1/5




0 0
√

2 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 −1 0 0 0

0 0 0 0 0
√

2 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0




. (B.9c)

The solution has the same form as in the four-dimensional Dn+2 magnetic theory [38].

In the general case the solution takes the form

q̃
Nf
α ∼ δα,1 , qαNf

∼ δα,3k ,

Y α
α+1 6= 0 , but Y k

k+1 = Y 2k
2k+1 = 0 , and Y k

2k+1 6= 0 ,

Y ′α
α+k 6= 0 (B.10)

with all other elements zero. The precise values of the non-vanishing elements can be

determined as above by solving the F and D-flatness equations.

The above vacuum expectation values Higgs the gauge group from

U(3n(Nf + k) −Nc) → U(3n(Nf + k − 1) −Nc) . (B.11)

At the same time the qNf
and q̃Nf quarks are eaten by the gauge group and disappear. The

adjoint fields Y , Y ′ break into smaller U(3n(Nf+k−1)−Nc) matrices and 6n fundamentals.

3n−1 of these fundamentals are eaten by the Higgs mechanism and 3n+1 of them become

massive. In the IR we recover the theory which is expected to be the magnetic dual to the

mass deformed electric theory (B.4).
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